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Graphical method for computing the determinant and 
inverse of a matrix: 11. Generating functions for the 
[an bn 0 0 .] representation matrices of SU(n) 

J J Labarthe 
Laboratoire Aim6 Cotton, CNRS 11, Bit. 505, Universitk Paris-XI, 91405 Orsay, France 

Received 1 February 1980 

Abstract. We consider a special 2n x 2 n  matrix 1 - x  for which the determinant is the 
square of a polynomial in the x,,. A graph G with n branches is associated to the matrix and 
det(1- x)  and (1 - x ) i '  are expressed in terms of sums over subgraphs of G. The generating 
functions of the representation matrices &&(U) of the representations [m] = 
[a,, b, 0 . . .] of SU(n) are expressed in terms of the determinant and inverse of such a 
2n X 2n matrix. 

1. Introduction 

In Labarthe 1978 (to be referred as I) we gave a graphical transcription of the usual 
algebraic expressions for the determinant and inverse of a matrix. The determinant was 
expressed as X M ( D )  where the sum is over some special subgraphs (called closed 
diagrams) of the graph associated to the matrix and M ( D )  is a monomial in the matrix 
elements. These results were similar to those of the Row graph theory of linear 
equations (Mason 1953, 1956, Coates 1959). In Labarthe (1975, to be referred as H) 
we also expressed graphically the determinant and inverse of a special matrix, obtaining 
expressions in terms of closed and open diagrams but quite different from the results of 
I. For example, the determinant was expressed as the square of the sum of M ( D )  over 
the closed diagrams. 

In 8 2 we generalise the results of H, to a larger class of 2n X 2n matrices, giving also 
a simpler proof for the inverse of the matrix. In 0 3 we use the elegant formalism of 
Henrich (1 975) describing representations of the unitary groups in entire function 
spaces with an Hermitian product given by a Gaussian measure. Generating functions 
for the representation matrices 9 c $ ( u )  can be obtained as an integral from the 
generating functions of the basis vectors. This method has already been employed by 
Hassan (1979) who has entirely worked out the SIJ(3) case. These generating functions 
provide us with explicit expressions of the representation matrices. For a review of 
other methods giving explicit expressions see 1,ouck and Biedenharn (1 973). We 
consider here the case of the representations [a,, 6, 0 .  , .] of SU(n) which correspond 
to Young diagrams of not more than two rows. Generating functions for the basis 
vectors were obtained by Henrich (1975). The resulting generating functions for the 
9""'matrices are expressed in terms of the inverse and determinant of a 2n x 2n matrix 
of the type considered in § 2. 
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2. Graphical method for computing det(1 -x )  and (1 -x)-' 

We consider a 2n x 2n complex matrix 

A B  
.=(-c A )  

where A,  B and C are n X n matrices such that = -C (the tilde denoting the 
transposed matrix). In the matrix elements A,, Bij, Cij and x k l  labels i and j run over 
p -- {1,2 ,3  . . . n }  and labels k and 1 run over p U f i  with fi  = {1 ,2 ,3  , . . A} and we have: 
x . ,  11 = A . , .  1 1 ,  x 11 . T  = B..* 1 1 ,  x 7 .  11 = --Cij; x ~7 = Aji. For k = i E p it is convenient to put k = i( E p) .  

To matrix x (equation (1)) we associate a graph G consisting of: n branches denoted 
( i  j or ( T j  with i E p ; branch ( i )  = ( L )  has two extremities i and i and is represented by an 
arrow going from i to i7 

For each pair of extremities k,  1 ( k  E p up, 1 E p up, k # I ) ,  a passage denoted ] k  I [  
or 11 k [  connecting these two extremities. Each passage is represented by an arrow and 
wears a value as shown in table 1: When the value of a passage is zero we can delete it 
from graph G. On figure 1 is represented the graph of the matrix x appearing for SU(3) 
in 0 3 for which A = 0. The three branches are represented by vertical segments. 

The matrix x considered in H 0 8 was also of form (1). In the case of a recoupling 
coefficient, all extremities were grouped in disjoint triplets. The extremities ijk of each 

= -B, 
- - -  

- I  - 

Table 1. Value and arrow of a passage. 
~~ ~ 

Arrow 
Passage from to Value 

'1 3 

'1 3 

Figure 1. Graph of x for SU(3). 
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triplet were connected by three passages ]i  j [ ,  3 j  k [  and ]k  i[ and no other passages 
existed. The graph defined in H was the same as here, to which was added a vertex for 
each above the triplet of extremities, thus forming the graph of the recoupling 
coefficient. 

We define the various diagrams of G as in H § 4. We will not repeat these 
definitions here, but let us point out an imprecision in H § 4. In the sequences or cycles 
of alternating branches and passages connected each to the following one, it is also 
required that the sequence or cycle can be drawn on the graph without turning back at 
any point. For example. . . , ] i  j [ ,  ( j ) ,  3 j  k [ ,  . . . is not allowed since one has to turn back 
on branch ( j )  to draw the sequence. 

However, we modify the definition of a free path: a free path is now a path beginning 
with a branch and ending with a passage. 

We need to make the convention that there are 2n more free paths J k  (k E p up) 
containing no passage and no branch. J k  can be thought of as containing only the 
extremity k.  The definition of a simple diagram also has to be modified. The easiest way 
is to include in the set W ( D )  of the elements of D the extremities over which the 
diagram passes (each being counted as many times as the diagram passes over it). For 
example a simple diagram containing J k  will not pass over branch ( k ) .  We also define 
the set &/ for k E p u p, 1 E p u p formed of the open diagrams, having a free path of the 
form ( k ) ,  16 p [ ,  . . . , ] 4  I [  (any p and 4 )  or just ( k ) ,  16 1[  if k # 1 or having the free path 

The monomial M ( D )  is defined for every diagram D in a way similar to H § 5. If D 

(a) for every passage belonging to B(D), the value of the passage (see table 1); 
(b) for every element (branch or passage) of B(D) such that its direction in D is 

(c) for every circuit in D, a factor -1. 
Since M ( D )  is independent of the directions of the circuits of D, M ( D )  is also 

defined for non-directed diagrams. Note that M(Jk) = 1. We define for k E p u p, 
1 E p up path P k l  made of branch ( k )  followed by passage ] E  I [ .  

We have xk/ = M(Pkl) and the calculations of § 8.1 and the appendix of H remain 
valid?. 
So we obtain 

J k  if k = 1. 

is a directed diagram, M ( D )  is obtained by multiplying the following factors: 

opposed to the arrow of that branch or passage in G, a factor -1; 

2 

det(1 -x)  = (1 + M ( D ) )  (2) 
DEKo 

where the sum is over the closed diagrams. For the example in figure 1, the closed 
diagrams and their M ( D )  are given in figure 2 so that: det(1-x) = 
(1 -B12C12-B23C23-B13C13)2. The graphical calculations in H 9 8.2 give similarly 
(1 - x ) i l .  However, there is a much simpler way of obtaining (1 - x ) i l  as we explain 
below. 

Let x k l  be the cofactor of (1 - x)lk in matrix 1 - x. For i E p, j E p we have Xij = XF, 
Xi?  = -Xjr and Xc = -Xp. It is then easily seen that the cofactors can be expressed in 
terms of the derivatives of det(1 - x )  with respect to A,, B, (i < j )  and Cij ( i  < j )  for 
example: 

(d/dAii) det(1 -x)  = -Xji -Xr? = -2Xii. 

t There is a misprint in the 6th line of the appendix: read H b  nBw instead of H &  uBw. 
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- '1 2'1 2 B2 3' 2 3 - B1 3'1 3 

Figure 2. Closed diagrams of graph figure 1 and M ( D ) .  

Calculating these derivatives from equation (2) we obtain 

We will have to calculate 

v ( l - X ) - l w  = c -?Jn( l -X)k; lW, .  
k a p v p  
l€pClp 

Putting M ' (  T )  = v&f( T ) w i  for T E SZkl we have 

For the example in figure 1, 

3. Generating functions for D k $ ( u )  

3.1. Generating function for the basis wetors 

We now follow the notations of Henrich (1975). The polynomials r ( M ;  2 )  in the 
elements of the n x n complex matrix 2, where 

an-? h,-1 0 . . 0 
. . . , . * . .  

\ a1 / 
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is a Gel’fand pattern, form an orthonormal basis of the representation [ m ] =  
[a, b, 0 . . . 01 of SU(n) ,  the Hermitian product being given by 

U E SU(n)  operates on IYM; 2) by T(M;  2) + r ( M ;  ZU). 
The generating function of the r ( M ;  Z) is given on page 2282 of Henrich in terms of 

P = (PI,  P Z  * . a pn), 4 = (q2, q3 * . . 4,): 

where 

A’ = A y 1 A 9 2 .  . . A?, pq = pL’p93.. . p 2 ,  

Z M  means, as in the following, the sum over all patterns of type (9, N ( M )  is a 
normalisation constant: 

3.2. Generating function for the representation matrix 

The representation matrix 9$$ ( U )  is defined by 

[MI, denoting the top row of the Gel’fand pattern ([m]=[M’],) or, using the 
orthogonality of the basis vectors, by: 

9E$(u)  = r (M’;  Zu)F(M; 2) d r ( Z ) .  I 
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A generating function for the 9k$(u) is obtained from: 

2879 

the integral in equation (7) reduces to 

I exp(5;c5+ U 5  + &) dy(5) 

with x as in equation (1). 
Its value, computed by the method of the appendix of Bargmann (1962), gives CP as: 

C P =  [det(l-x)]-lexp[v(l-x)-’w]. (8) 
The various parts of equation (8) have been calculated in § 2: see equations (2) and (4); 
the example in figure 1, detailed in § 2, corresponds to the case of SU(3). 

4. Conclusion 

Due to equations (2) and (4), equation (8) for the generating function CP has a compact 
form. However, the expressions for the representation matrices obtained from it 
involve a very great number of summations. Generalisation to other representations of 
SU(n) would require the generating functions of the basis vectors but these are 
unknown. By adding a term X j < k < I A i C L k v I A i k l ( u )  in the exponent of equation ( 5 )  one 
does not obtain the generating function for the representations [a ,  b, cn 0 . . . 01 as 
can be seen in the case of SU(4) (Gazeau et a1 1975 and 1978). 

The proof of equation (2) is based on the expression of det(1 - x )  as an infinite 
product. The question remains of whether a more direct proof exists. 
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